Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Redox states of glutathione and ascorbate in root tips of poplar (Populus tremula X P. alba) depend on phloem transport from the shoot to the roots.

Identifieur interne : 003142 ( Main/Exploration ); précédent : 003141; suivant : 003143

Redox states of glutathione and ascorbate in root tips of poplar (Populus tremula X P. alba) depend on phloem transport from the shoot to the roots.

Auteurs : Cornelia Herschbach [Allemagne] ; Ursula Scheerer ; Heinz Rennenberg

Source :

RBID : pubmed:20022923

Descripteurs français

English descriptors

Abstract

Glutathione (GSH) and ascorbate (ASC) are important antioxidants that are involved in stress defence and cell proliferation of meristematic root cells. In principle, synthesis of ASC and GSH in the roots as well as ASC and GSH transport from the shoot to the roots by phloem mass flow is possible. However, it is not yet known whether the ASC and/or the GSH level in roots depends on the supply from the shoot. This was analysed by feeding mature leaves with [(14)C]ASC or [(35)S]GSH and subsequent detection of the radiolabel in different root fractions. Quantitative dependency of root ASC and GSH on shoot-derived ASC and GSH was investigated with poplar (Populus tremula X P. alba) trees interrupted in phloem transport. [(35)S]GSH is transported from mature leaves to the root tips, but is withdrawn from the phloem along the entire transport path. When phloem transport was interrupted, the GSH content in root tips halved within 3 d. [(14)C]ASC is also transported from mature leaves to the root tips but, in contrast to GSH, ASC is not removed from the phloem along the transport path. Accordingly, ASC accumulates in root tips. Interruption of phloem transport disturbed the level and the ASC redox state within the entire root system. Diminished total ASC levels were attributed mainly to a decline of dehydroascorbate (DHA). As the redox state of ASC is of particular significance for root growth and development, it is concluded that phloem transport of ASC may constitute a shoot to root signal to coordinate growth and development at the whole plant level.

DOI: 10.1093/jxb/erp371
PubMed: 20022923
PubMed Central: PMC2826650


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Redox states of glutathione and ascorbate in root tips of poplar (Populus tremula X P. alba) depend on phloem transport from the shoot to the roots.</title>
<author>
<name sortKey="Herschbach, Cornelia" sort="Herschbach, Cornelia" uniqKey="Herschbach C" first="Cornelia" last="Herschbach">Cornelia Herschbach</name>
<affiliation wicri:level="3">
<nlm:affiliation>Albert-Ludwigs-University Freiburg, Institute of Forest Botany and Tree Physiology, Chair of Tree Physiology, Georges-Köhler-Allee 053/054, D-79110 Freiburg, Germany. cornelia.herschbach@ctp.uni-freiburg.de</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Albert-Ludwigs-University Freiburg, Institute of Forest Botany and Tree Physiology, Chair of Tree Physiology, Georges-Köhler-Allee 053/054, D-79110 Freiburg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Fribourg-en-Brisgau</region>
<settlement type="city">Fribourg-en-Brisgau</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Scheerer, Ursula" sort="Scheerer, Ursula" uniqKey="Scheerer U" first="Ursula" last="Scheerer">Ursula Scheerer</name>
</author>
<author>
<name sortKey="Rennenberg, Heinz" sort="Rennenberg, Heinz" uniqKey="Rennenberg H" first="Heinz" last="Rennenberg">Heinz Rennenberg</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20022923</idno>
<idno type="pmid">20022923</idno>
<idno type="doi">10.1093/jxb/erp371</idno>
<idno type="pmc">PMC2826650</idno>
<idno type="wicri:Area/Main/Corpus">003354</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003354</idno>
<idno type="wicri:Area/Main/Curation">003354</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003354</idno>
<idno type="wicri:Area/Main/Exploration">003354</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Redox states of glutathione and ascorbate in root tips of poplar (Populus tremula X P. alba) depend on phloem transport from the shoot to the roots.</title>
<author>
<name sortKey="Herschbach, Cornelia" sort="Herschbach, Cornelia" uniqKey="Herschbach C" first="Cornelia" last="Herschbach">Cornelia Herschbach</name>
<affiliation wicri:level="3">
<nlm:affiliation>Albert-Ludwigs-University Freiburg, Institute of Forest Botany and Tree Physiology, Chair of Tree Physiology, Georges-Köhler-Allee 053/054, D-79110 Freiburg, Germany. cornelia.herschbach@ctp.uni-freiburg.de</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Albert-Ludwigs-University Freiburg, Institute of Forest Botany and Tree Physiology, Chair of Tree Physiology, Georges-Köhler-Allee 053/054, D-79110 Freiburg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Fribourg-en-Brisgau</region>
<settlement type="city">Fribourg-en-Brisgau</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Scheerer, Ursula" sort="Scheerer, Ursula" uniqKey="Scheerer U" first="Ursula" last="Scheerer">Ursula Scheerer</name>
</author>
<author>
<name sortKey="Rennenberg, Heinz" sort="Rennenberg, Heinz" uniqKey="Rennenberg H" first="Heinz" last="Rennenberg">Heinz Rennenberg</name>
</author>
</analytic>
<series>
<title level="j">Journal of experimental botany</title>
<idno type="eISSN">1460-2431</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Ascorbic Acid (metabolism)</term>
<term>Biological Transport (MeSH)</term>
<term>Glutathione (metabolism)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Phloem (growth & development)</term>
<term>Phloem (metabolism)</term>
<term>Plant Roots (growth & development)</term>
<term>Plant Roots (metabolism)</term>
<term>Plant Shoots (growth & development)</term>
<term>Plant Shoots (metabolism)</term>
<term>Populus (growth & development)</term>
<term>Populus (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acide ascorbique (métabolisme)</term>
<term>Glutathion (métabolisme)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Phloème (croissance et développement)</term>
<term>Phloème (métabolisme)</term>
<term>Populus (croissance et développement)</term>
<term>Populus (métabolisme)</term>
<term>Pousses de plante (croissance et développement)</term>
<term>Pousses de plante (métabolisme)</term>
<term>Racines de plante (croissance et développement)</term>
<term>Racines de plante (métabolisme)</term>
<term>Transport biologique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Ascorbic Acid</term>
<term>Glutathione</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Phloème</term>
<term>Populus</term>
<term>Pousses de plante</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Phloem</term>
<term>Plant Roots</term>
<term>Plant Shoots</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Phloem</term>
<term>Plant Roots</term>
<term>Plant Shoots</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acide ascorbique</term>
<term>Glutathion</term>
<term>Phloème</term>
<term>Populus</term>
<term>Pousses de plante</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biological Transport</term>
<term>Oxidation-Reduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Oxydoréduction</term>
<term>Transport biologique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Glutathione (GSH) and ascorbate (ASC) are important antioxidants that are involved in stress defence and cell proliferation of meristematic root cells. In principle, synthesis of ASC and GSH in the roots as well as ASC and GSH transport from the shoot to the roots by phloem mass flow is possible. However, it is not yet known whether the ASC and/or the GSH level in roots depends on the supply from the shoot. This was analysed by feeding mature leaves with [(14)C]ASC or [(35)S]GSH and subsequent detection of the radiolabel in different root fractions. Quantitative dependency of root ASC and GSH on shoot-derived ASC and GSH was investigated with poplar (Populus tremula X P. alba) trees interrupted in phloem transport. [(35)S]GSH is transported from mature leaves to the root tips, but is withdrawn from the phloem along the entire transport path. When phloem transport was interrupted, the GSH content in root tips halved within 3 d. [(14)C]ASC is also transported from mature leaves to the root tips but, in contrast to GSH, ASC is not removed from the phloem along the transport path. Accordingly, ASC accumulates in root tips. Interruption of phloem transport disturbed the level and the ASC redox state within the entire root system. Diminished total ASC levels were attributed mainly to a decline of dehydroascorbate (DHA). As the redox state of ASC is of particular significance for root growth and development, it is concluded that phloem transport of ASC may constitute a shoot to root signal to coordinate growth and development at the whole plant level.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20022923</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>05</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1460-2431</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>61</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2010</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Journal of experimental botany</Title>
<ISOAbbreviation>J Exp Bot</ISOAbbreviation>
</Journal>
<ArticleTitle>Redox states of glutathione and ascorbate in root tips of poplar (Populus tremula X P. alba) depend on phloem transport from the shoot to the roots.</ArticleTitle>
<Pagination>
<MedlinePgn>1065-74</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/jxb/erp371</ELocationID>
<Abstract>
<AbstractText>Glutathione (GSH) and ascorbate (ASC) are important antioxidants that are involved in stress defence and cell proliferation of meristematic root cells. In principle, synthesis of ASC and GSH in the roots as well as ASC and GSH transport from the shoot to the roots by phloem mass flow is possible. However, it is not yet known whether the ASC and/or the GSH level in roots depends on the supply from the shoot. This was analysed by feeding mature leaves with [(14)C]ASC or [(35)S]GSH and subsequent detection of the radiolabel in different root fractions. Quantitative dependency of root ASC and GSH on shoot-derived ASC and GSH was investigated with poplar (Populus tremula X P. alba) trees interrupted in phloem transport. [(35)S]GSH is transported from mature leaves to the root tips, but is withdrawn from the phloem along the entire transport path. When phloem transport was interrupted, the GSH content in root tips halved within 3 d. [(14)C]ASC is also transported from mature leaves to the root tips but, in contrast to GSH, ASC is not removed from the phloem along the transport path. Accordingly, ASC accumulates in root tips. Interruption of phloem transport disturbed the level and the ASC redox state within the entire root system. Diminished total ASC levels were attributed mainly to a decline of dehydroascorbate (DHA). As the redox state of ASC is of particular significance for root growth and development, it is concluded that phloem transport of ASC may constitute a shoot to root signal to coordinate growth and development at the whole plant level.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Herschbach</LastName>
<ForeName>Cornelia</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Albert-Ludwigs-University Freiburg, Institute of Forest Botany and Tree Physiology, Chair of Tree Physiology, Georges-Köhler-Allee 053/054, D-79110 Freiburg, Germany. cornelia.herschbach@ctp.uni-freiburg.de</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Scheerer</LastName>
<ForeName>Ursula</ForeName>
<Initials>U</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rennenberg</LastName>
<ForeName>Heinz</ForeName>
<Initials>H</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>12</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Exp Bot</MedlineTA>
<NlmUniqueID>9882906</NlmUniqueID>
<ISSNLinking>0022-0957</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>PQ6CK8PD0R</RegistryNumber>
<NameOfSubstance UI="D001205">Ascorbic Acid</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001205" MajorTopicYN="N">Ascorbic Acid</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001692" MajorTopicYN="N">Biological Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D052585" MajorTopicYN="N">Phloem</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018520" MajorTopicYN="N">Plant Shoots</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>12</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>12</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>5</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20022923</ArticleId>
<ArticleId IdType="pii">erp371</ArticleId>
<ArticleId IdType="doi">10.1093/jxb/erp371</ArticleId>
<ArticleId IdType="pmc">PMC2826650</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Physiol. 2004 Apr;134(4):1479-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15047900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2005 Dec;86(3):459-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16328783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1996 Nov;112(3):1071-1078</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12226433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Dev Biol. 2005;21:485-509</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16212504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2000 Jan;12(1):97-110</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10634910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Oct;130(2):649-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12376632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 2001 Jun;52:437-467</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11337405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1995 Apr;107(4):1067-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7770518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Jun;141(2):312-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16760481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Sep;31(6):729-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12220264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1999 Aug;11(8):1485-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10449582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Mar 18;94(6):2745-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11038608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2008 Sep 8;165(13):1390-403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18171593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1997 Nov;115(3):1277-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9390448</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2006 Mar;29(3):409-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17080595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2004 Dec;55(408):2589-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15520029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1996 May;111(1):147-157</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12226281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1976 Jan;133(1):21-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24425174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1990 Sep;94(1):312-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16667703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2007 Mar;9(2):215-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17357016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Aug;18(8):1846-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16844908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2004 Jan;45(1):1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14749480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protoplasma. 1999;209(1-2):90-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18987797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2010;61(2):609-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19923196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2006;57(8):1645-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16720601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2005 Dec;86(3):435-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16315075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1979 Oct;147(1):57-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24310895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1998 Jun;49:249-279</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2009 Apr;11(4):861-905</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19239350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1982 Jun;155(1):82-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24271631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2007 Sep;9(5):620-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17853362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Jul;141(3):1068-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16766673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2003 Apr;130(7):1429-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12588857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2000 Jun;51(347):1077-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10948235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1998 Oct;16(1):73-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9807829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Microsc. 2000 Jun;198(Pt 3):162-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10849194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Mar 27;422(6930):442-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12660786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2003 Nov 24;3:7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14633288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Feb;149(2):803-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19028878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Sep;124(1):461-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10982459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Chim Acta. 1980 May 9;103(3):259-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7398071</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2004 Aug;55(404):1775-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15208336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2000 Apr;51(345):669-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10938858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2005 Dec;86(3):309-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16328785</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
<region>
<li>Bade-Wurtemberg</li>
<li>District de Fribourg-en-Brisgau</li>
</region>
<settlement>
<li>Fribourg-en-Brisgau</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Rennenberg, Heinz" sort="Rennenberg, Heinz" uniqKey="Rennenberg H" first="Heinz" last="Rennenberg">Heinz Rennenberg</name>
<name sortKey="Scheerer, Ursula" sort="Scheerer, Ursula" uniqKey="Scheerer U" first="Ursula" last="Scheerer">Ursula Scheerer</name>
</noCountry>
<country name="Allemagne">
<region name="Bade-Wurtemberg">
<name sortKey="Herschbach, Cornelia" sort="Herschbach, Cornelia" uniqKey="Herschbach C" first="Cornelia" last="Herschbach">Cornelia Herschbach</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003142 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003142 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:20022923
   |texte=   Redox states of glutathione and ascorbate in root tips of poplar (Populus tremula X P. alba) depend on phloem transport from the shoot to the roots.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:20022923" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020